Journal of the

Indian Society of Agricultural Statistics

ESTIMATION OF STALK-BORER INCIDENCE IN SUGARCANE CROPS

By R. S. Srivastava
Indian Institute of Sugarcane Research, Lucknow

Introduction

The borer incidence in sugarcane crop is defined as the proportion of the infested stalks in the total population. Major attempts to estimate it by suitable sampling methods have been made by Khanna and Bandyopadhyay (1951), Rojas (1953) and Srivastava (1957). Khanna and Bandyopadhyay have considered the incidence values on the primary units belonging to a Poisson distribution and accordingly applied the Square-root transformation. Rojas has assumed these to belong to a Normal distribution while Srivastava has taken this to be a Binomial distribution and has converted all these values by inverse sine transformation. These transformed values were then analysed and the sampling scheme which gave the lowest coefficient of variation or within unit variance was recommended for general purposes. These recommendations are not similar and experience has shown that the estimates obtained from these were considerably different from the actual values. This, therefore, calls for further research and presently a probe into the assumed existence of a specified population and the transformation applicable thereto has been made.

Problem

If ' X ' and ' Y ' be the number of infested and the total stalks in the population and ' x ' and ' y ' the corresponding numbers in a random sample, then the incidence is defined as the proportion ' X / Y ' and for a given precision, the problem is to estimate ' X / Y ' with the help of the sample values.

It is well known that for the application of any statistica! theory the main consideration is that for the random variable under study there should exist a probability distribution having a known mathematical form. According to Deming (1950) this shape is reproduced hour after hour, day after day, so long as the process remains in statistical control, that is, exhibits properties of randomness. Unless this holds, the statistician can never make meaningful and useful predictions about the future samples. Thus the distribution is either known to exist or assumed to exist from the past experience. As stated, the previous workers have assumed the distribution of the incidence values on the primary units to the Poisson, Normal or Binomial distribution. Let this postulate be examined.

In any sampling scheme of sugarcane, it is hysically impossible to take the stalks or the clumps, as primary units because this demands at least an ordering of all the stalks or the clumps in the population so that the selection of a random sample may be possible. On the other hand, if portions of row lengths or small area units are considered then it is almost sure that units cannot be so framed as to have equal number of stalks. Thus in any primary unit both the infested (x) and the total stalk (y) will be subject to error, that is, will have variations. If the variations be small in magnitude, then the above assumptions might hold; but if they are not ' x ' and ' y ' will have to be considered separately. Khanna and Bandyopadhyay have observed that 'there is a considerable amount of non-homogeneity in the incidence data'; the scrutiny about the distributions of ' x ' and ' y ', therefore, becomes all the more essential. If both ' x ' and ' y ' are subject to error, then the incidence values ' x / y ', $0 \leqslant x \leqslant y$, obtained from the primary units do not form a consisuent estimate for ' X / Y ', and then a suitable statistic to estimate the incidence in the population will have to be found out. It is on these lines that the investigations have been carried out and are presented in this paper.

For this, the primary units of different row length cuts have been considered and from the change in the mean and variance of ' x ' and ' y ' separately the shepe of the distribution of ' x ' and ' y ' has been investigated and the statistic based on a valid transformation has been suggested. Lastly, with the help of a random sample, the relative efficiencies of the statistic based on the above transformation in relation to other ones have been calculated.

Material

Two plots of $55^{\prime} \times 27^{\prime}$ of sugarcane having nine rows of 55^{\prime} row length each at the farm of the Indian Institute of Sugarcane Research

Lucknow, were taken for these studies. The number of stalks in each clump was noted and the location of clumps in the plot was marked to scale on a graph paper. Complete enumeration of the stalk-borer (Chilotraea auricilia Ddgn.) infested stalks was done by splitting each stalk. Such enumerations were made in the Entomology Section and the data of two years-1954-55 and 1957-58-were utilized. These two years were deliberately chosen because of the low infestation in one and the high in the other.

These data when reproduced on a graph paper could be utilized for proper subdivisions into primary units. The entire row lengths were partitioned into cuts of $1^{\prime}-11^{\prime}$ and the number of infested and total stalks were counted in each cut. Those units which had no stalks were left out of the count. Thus the number of primary units, their

Table I
The means and the variances of the infested and the total stalks in primary units of varying lengths

Length of the primary unit in feet	1954-1955				1957-58				
	Total No. of units	Infested stalks		Total stalks	Total No. of units	Infested stalks		Total stalks	
		Mean	Variance	Mean Variance		Mean	Variance	Mean	Variance
1	2	3	4	56	7	8	9	10	11
1	371	1.09	$1 \cdot 299$	3-79 5.543	262	$1 \cdot 90$	4.027	$3 \cdot 84$	6.254
2	236	1-71	2.567	5.9611 .398	205	$2 \cdot 43$	$5 \cdot 786$	$4 \cdot 90$	$10 \cdot 394$
3	162	2-49	$4 \cdot 022$	$8 \cdot 6215 \cdot 196$	153	3.08	7.212	$6 \cdot 31$	$13 \cdot 968$
4	123	$3 \cdot 31$	$6 \cdot 116$	11.33 22.043	117	$4 \cdot 02$	$10 \cdot 455$	8.21	$20 \cdot 716$
5	99	4.08	$7 \cdot 044$	14.24 21-800	96	$4 \cdot 76$	12•686	9.53	23.294
6	82	$4 \cdot 94$	9-31]	17.11 29.073	79	$5 \cdot 63$	14.214	11-63	24-022
7	70	$5 \cdot 77$	12-405	$20 \cdot 1035 \cdot 861$	69	6.72	$19 \cdot 358$	$13 \cdot 58$	$35 \cdot 838$
8	61	6. 62	18.263	$22 \cdot 67$ 45.139	61	7.72	17-120	16.18	38.540
9	55	$7 \cdot 35$	16.953	25.40 53.876	55	9-0.5	$29 \cdot 910$	17.83	45.610
10	49	$8 \cdot 20$	18.122	$28.3153 \cdot 151$	49	9.88	$29 \cdot 290$	$19 \cdot 65$	$40 \cdot 635$
11	45	8.98	$21 \cdot 355$	$31.2748 \cdot 862$	45	10.53	3f.855	22-31	$55 \cdot 330$

location, the number of infested and total stalks in each of them were recorded.

For different lengths of the primary units, the number of units in the plots, the means, variances for the stalk-borer infested and total stalks for the years 1954-55 and 1957-58 have been given in Table I.

It is seen that both the means and variances have steadily increased with the size of the primary units. As such it appears that even when ' x ' and ' y ' are both considered separately the increase in the size of primary unit does not decrease the within unit variation so that specific unit might be recommended for sampling. Further, the variances for all the series are always higher than the mean, which indicates that there might be a functional relationship between the variance and the mean quite different from Poisson for which the variance and mean are equal or Binomial for which the variance is less than the mean. The investigations for this relationship were, therefore, carried out by fitting distributions on the observed series of infested and total stalk counts.

Fitting the Distribution on the Data

The observed number of infested and total stalks in the primary units from 1^{\prime} to 6^{\prime} units, the mean and variance for each series have been shown in Table II. The series for units higher than 6^{\prime} have been left out because for applying x^{2} test too many cell frequencies had to be grouped together making the fit too artificial.

The analysis regarding the shape of the population is invariably made with one of two aims (a) to fit in a biological process for which a distribution is known and (b) to interpret the data by a suitable transformation which may be valid with the knowledge of the distribution. From Table II it is evident that all the series have an overdispersion because the variances are significantly greater than the mean. When the over-dispersion is present, a number of distributions depending on the increasing skewness and tail length have been examined by Anscombe (1950). These are the Thomas, Fisher's logarithmic, Neyman's contagious, Polya Aeppli and Negative Binomial (NB) distributions. Of these Thomas and Neyman's contagions admit of a number of modes, Polya Aeppli two and $N B$ only one. The logarithmic distribution, though having one mode, is more skew. Thus considering the number of modes and the tail-length the $N B$ distribution
was preferred for investigation if this might be useful for the interpretation of the data.

Following Anscombe for $N B$ distribution, the probability of ${ }^{\prime} r$ ' counts is given by

$$
P(r)=\binom{k+r+1}{r}\left(1+\frac{m}{k}\right)^{-k}\left(\frac{m}{m+k}\right)^{r} .
$$

This has two parameters ' m ' and ' k '. The best estimate of ' m ' is ' \bar{r} ' the sample mean and is fully efficient. The ' k ' is estimated by $\left\{(\bar{r})^{2} /\left(S^{2}-\bar{r}\right)\right\}$ where S^{2} is the sample variance, and for a large sample the errors of estimation of ' m ' and ' k ' are independent.

With the mean and variances as obtained for each series of Table II, ' m ' and ' k ' were estimated and the expected frequencies and the values of χ^{2} as obtained have been shown in Table III.

The low values of χ^{2} show that the $N B$ distribution can be profitably used to interpret not only the distribution of the infested stalks, but for the total stalks also. It now becomes clear that the incidence values cannot be considered as they are, but a suitable statistic based on $N B$ distribution should be employed to estimate incidence on a given precision.

The Statistic to Estimate Incidence

Let ' r ' be the observed number of counts from a $N B$ distribution. The variance ' V ' of r is then functionally related to the mean ' m ' by $V=m+m^{2} / k$. A new variable ' t ' a function of ' r ' but independent of ' m ' will, therefore, be given by

$$
t=\int \frac{1}{\sqrt{r+\frac{r^{2}}{k}}} d r=k^{-\frac{3}{3}} \log (\sqrt{1+k r}+\sqrt{k r})
$$

This variate ' t ' is a normal variate and Beall (1954) has used this transformation on actual data and mentions that 'in particular the third moment of the transformed variable seems to approach zero'. Thus if a sample of ' n ' units is chosen at random and the counts of the infested and total stalks be $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$, then the incidence is to be estimated either by

$$
T_{1}=\frac{1}{n} \sum \frac{x_{i}}{y_{i}} \text { or } T_{2}=\frac{\sum \frac{x_{i}}{n}}{\sum \frac{y_{i}}{n}}
$$

140 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS
Table
Observed number of primary units having different

II

numbers of stalk-borer infested and the total stalks

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { total } \\ \text { stalks } \end{gathered}$	1954-5ס Size of primary unit in feet						1957-58 Size of primary unit in feet					
	1	2	3	4	5	6	1	2	3	4	5	6
1	61	20	2	.	.	.	41	\cdots	8	3	2	1
2	72	22	6	1		.	44	24	8	3	2	i
3	59	20	6	3	.	.	63	25	20	12	6	2
4	54	27	10	2	.	..	32	30	23	10	7	4
5	45	27	13	5	.	..	29	32	17	11	4	5
6	39	23	14	9	-	.	18	20	15	11	7	4
7	17	28	15	8	5	.	12	16	13	11	6	6
8	7	15	21	13	4	.	9	11	9	8	14	3
9	8	14	10	9	5	.	4	9	6	8	5	10
10	2	6	12	9	10	8	3	8	12	6	8	5
11	3	7	15	8	8	7	4	8	9	5	3	5
12	2	4	11	8	9	2	3	6	4	8	5	6
13	2	8	11	6	8	4	:	10	2	2	4	7
14	-•	4	7	4	5	6	\cdots	.	3	4	7	1
15	..	1	3	12	9	3	.	.	2	3	3	4
16	-	..	6	9	5	5	.	.	2	12	$\stackrel{5}{5}$	2
17	\ldots	.	.	8	5	11	5	2
18	.	-	\cdots	1	3	11	5	3
19	..	.	\ldots	1	6	4	1	2
20	7	6	2	2	1
$2{ }^{2}$.	11	1	.	-	\cdots	-	-	-
22	4	\cdots	-	\cdots	.	\cdots	.
23	3	.	-	.	.	.	\bullet
24	3
25	\cdots	.	-	-	.	8	.	.	-•	.	.	.
N	371	236	162	123	99	82	262	205	153	117	96	79
Mean	3•79	5.96	8. 62	$11 \cdot 33$	14.24	7.11	3-84	$4 \cdot 90$	$6 \cdot 31$	$8 \cdot 21$	$9 \cdot 53$	$11 \cdot 63$
Variance	5. 543		5•196		$21 \cdot 80$		6. 254		.13.968		23-294	
		11.398		$22 \cdot 043$	-	9.073		$10 \cdot 394$		$20 \cdot 716$		24-02?

142 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

Table
Expected number of primary units having aifferent

No. of infested stalks	1954-55 Size of primary unit in feet						1957-58 Size of primary unit in feet					
	1	2	3	4	5	6	1	2	3	4	5	6
0	137	59	23	9	5	2	73	45	22	11	6	6
1	125	67	36	19	11	6	66	46	29	16	10	8
2	67	50	35	23	15	10	47	36	27	18	13	9
3	28	30	27	22	16	11	30	26	22	16	13	9
4	14	16	18	18	15	11	19	18	17	14	12	9
5	-	8	11	13	12	10	11	19	12	11	10	8
6	\cdots	\cdots	6	8	9	9	7	8	8	9	8	6
7	.	6	..	5	6	6	4	5	6	6	6	5
8	,		6	i0	\%	6	2		3	4
9	16	10	5		9	\cdots	..		3
10	\cdots	\cdots		3	.	10	16	15	
11	.	.	\cdots	5	..	-				\cdots
12	..	\cdots	\cdots	.	\cdots	\cdots	\cdots	9
13	-	-	\cdots	,
14	-	\cdots	-	
15	-		.	.	\cdots	-	-	-	\cdots	\cdots	.	-
,												
.												
N	371	236	162	123	99	82	262	205	153	117	96	79
M	$1 \cdot 09$	1-71	$2 \cdot 49$	3.31	$4 \cdot 08$	$4 \cdot 94$	$1 \cdot 90$	$2 \cdot 43$	$3 \cdot 08$	$4 \cdot 02$	4.76	$5 \cdot 63$
K	5.685	$3 \cdot 410$	4•047	$6 \cdot 067$	$5 \cdot 616$	$5 \cdot 583$	1.699	$1 \cdot 759$	$2 \cdot 296$	2.511	2.859	3-692
χ^{3}	$0 \cdot 896$	8.757	$4 \cdot 590$	9.518	$7 \cdot 057$	$2 \cdot 209$	$6 \cdot 485$	6.438	$5 \cdot 320$	9. 188	5.310	$7 \cdot 083$
* d.f.	3	5	4	7	6	7	5	7	7	$?$	7	6
Significance	85\%	10\%	30\%	20\%	30\%	90\%	30%	15\%	50\%	20\%	60\%	30\%

III
numbers of stalk-borer infested and total stalks

Number of total stalks	1954-55						1957-58 Size of primary unit in feet					
	1	2	3	4	5	${ }^{-\cdots} 6$	1.	2	3	4	5	6
1	59	14	2	I	.	-	44	\cdots	9	3	1	
2	62	19	3	1	.	\cdots	43	26	12	5	2	
3	66	26	7	2	-	.	45	26	16	7	4	i
4	59	30	10	3	.	.	39	29	18	9	5	1
5	45	30	14	5	.	\cdots	31	28	18	11	7	2
6	31	27	16	7	.	\cdots	12	25	17	11	8	3
7	20	23	17	9	6	.	15	21	14	11	8	4
S	12	19	17	10	4	.	9	16	12	10	8	5
9	7	14	16	11	5	.	9	12	10	9	8	6
10	\because	11	14	11	7	8	\cdots	9	8	8	7	6
11	10	. 8	12	11	8	4	\cdots	6	6	7	7	6
12	-	5	9	10	8	4	5	.	8	6	6	6
13	.	4	7	9	9	5	5	7	.	.	5	6
14	\cdots	6	5	8	9	6	\cdots	.	..	8	4	5
15	-	-	\cdots	6	8	6	.	-	5	12	3	5
16	"	.	13	5	7	6	\cdots	.	\cdots	.	3	4
17	\cdots	\cdots	..	.	6	6	.	..	\cdots	..	2	4
18	-	-	-	-	5	6	\cdots	-	-	\cdots	2.	-
19	-	.	.	\cdots	4	5	1.	19
20	.	.	.	28	5	5	.	-	..	"	.	..
21	\cdots	$\therefore 4$.	-	* ..	-	5	
22	13	3	-	\cdots	-	\ldots		.
23,	..	3	.	.	".	\cdots	. \cdot	\because
24	\cdots	\cdots	.	..		\because	\cdots	\cdots
25	\because		11	\cdots	-	\cdots	\cdots	\cdots	\cdots
N	371	236	162	123	99	82	262	205	153	117	96	79
W	$3 \cdot 79$	$5 \cdot 96$	$8 \cdot 62$	11-33	$14 \cdot 24$	17.11	3.84	$4 \cdot 90$	6.31	8.21	$9 \cdot 56$	11•63
K	8.194	6.532	11-300	11.983	26.822	24.471	$6 \cdot 107$	4.364	5-199	$5 \cdot 390$	6.599	$10 \cdot 915$
χ^{2}	7-688	$11 \cdot 117$	$12 \cdot 087$	$8 \cdot 585$	$5 \cdot 494$	$12 \cdot 365$	11-384	$19 \cdot 305$	11-345	$7 \cdot 666$	$6 \cdot 480$	1-644
d.f.	8	11	12	12	10	8	8	9	11	11	7	6
Significance	45\%	40\%	40\%	70\%	85\%	-10\%	15\%	20\%	40\%	75\%	45\%	90\%

* The d.f. are two less than the number of cell frequencies compared.

Since ' x ' and ' y ' both are from $N B$ distribution, these may be converted to normal variates $p=k_{1}{ }^{-\frac{1}{3}} \log \left(\sqrt{1+k_{1} x}+\sqrt{k_{1} x}\right)$ and $q=k_{2}^{-\frac{1}{2}} \log \left(\sqrt{1+k_{2}} y+\sqrt{k_{2} y}\right)$ and the corresponding statistics

$$
T_{1}=\frac{1}{n} \sum \frac{p_{i}}{q_{i}} \text { and } T_{2}=\frac{\sum \frac{p_{i}}{n}}{\sum \frac{q_{i}}{n}} .
$$

It will be examined which of these statistics may be employed for the estimation of incidence.

Following Rao (1952) if μ_{1}, μ_{2} and $\sigma_{1}{ }^{2}, \sigma_{2}{ }^{2}$ be the means and variances of ' p ' and ' q ' and ρ the correlation between these then with the usual notations,

$$
\begin{array}{ll}
\mu_{20}=\sigma_{1}^{2}, \quad \mu_{02}=\sigma_{2}{ }^{2}, \quad \mu_{11}=\rho \sigma_{1} \sigma_{2}, \quad \mu_{22}=\left(1+2 \rho^{2}\right) \sigma_{1}{ }^{2}{ }^{2}{ }^{2}{ }^{2} \\
\mu_{40}=3 \sigma_{1}{ }^{2}, \quad \mu_{04}=3 \sigma_{2}{ }^{2}, \quad \mu_{13}=3 \rho \sigma_{1} \sigma_{2}{ }^{3}, \quad \mu_{31}=3 \rho \sigma_{1}{ }^{3} \sigma_{2} .
\end{array}
$$

If

$$
p-\mu_{1}=\xi, \text { and } \quad q-\mu_{2}=\eta
$$

then

$$
\begin{aligned}
\frac{p}{q} & =\frac{\mu_{1}}{\mu_{2}}\left(1+\frac{\xi}{\mu_{1}}\right)\left(1+\frac{\eta}{\mu_{2}}\right)^{-1} \\
& =\frac{\mu_{1}}{\mu_{2}}\left\{1-\frac{\eta}{\mu_{2}}+\frac{\eta^{2}}{\mu_{2}{ }^{2}}-\cdots+\frac{\xi}{\mu_{1}}\left(1-\frac{\xi}{\mu_{2}}+\frac{\xi^{2}}{\mu_{2}{ }^{2}}-\cdots\right)\right\}
\end{aligned}
$$

Taking expectations of both the sides

$$
\begin{aligned}
E\left(\frac{p}{q}\right) & =\frac{\mu_{1}}{\mu_{2}}\left\{1+\frac{\mu_{02}}{\mu_{2}^{2}}+\frac{\mu_{04}}{\mu_{2}^{4}}+\cdots-\frac{\mu_{11}}{\mu_{1} \mu_{2}}-\frac{\mu_{13}}{\mu_{2}{ }^{3} \mu_{1}}-\cdots\right\} \\
& =\frac{\mu_{1}}{\mu_{2}}\left\{\sum_{0}^{\infty} \frac{(2 t)!2^{-t} v_{2}^{2 t}}{t!}-\rho v_{1} \sum_{0}^{\infty} \frac{(2 t+2)!2^{-(t+1)} v_{2}^{(2 t+1)}}{(t+1)!}\right\} \\
& =\frac{\mu_{1}}{\mu_{2}}\left\{1+\left(v_{2}-\rho v_{1}\right) \sum_{1}^{\infty} \frac{(2 t)!2^{-t} v_{2}^{2 t-1}}{t!}\right\}
\end{aligned}
$$

where v_{1} and v_{2} are the coefficients of variation of ' p ' and ' q ' respectively. Thus for T_{1} and T_{3}

$$
\begin{aligned}
& E\left(T_{1}\right)=\frac{\mu_{1}}{\mu_{2}}\left\{1+\left(v_{2}-\rho v_{1}\right) \sum_{1}^{\infty} \frac{(2 t)!2^{-t} v_{2}^{2 t-1}}{t!}\right\} \\
& E\left(T_{2}\right)=\frac{\mu_{1}}{\mu_{2}}\left\{1+\frac{1}{\sqrt{ } n}\left(v_{2}-\rho v_{1}\right) \sum \frac{(2 t)!2^{-t} v_{2}^{2 t-1}}{t!}\right\}
\end{aligned}
$$

since the coefficient of variation of \bar{p} is $v_{1} / \sqrt{ } n$ and of \bar{q} is $v_{2} / \sqrt{ } n$. If is seen that $E\left(T_{2}\right) \rightarrow \mu_{1} / \mu_{2}$ while $E\left(T_{1}\right)$ remains the same for all ' n ' and since both have variances of $0(1 / n), T_{2}$ converges Stochastically to μ_{1} / μ_{2} and T_{1} to some other value.
T_{1} is a biased estimate of μ_{1} / μ_{2} and does not admit a simple correction for bias. Since the bias does not tend to zero as $n \rightarrow \infty$, it should be considered inconsistent as an estimate of the parametric function μ_{1} / μ_{2}. On the other hand, T_{2} is a consistent estimate of the ratio.

Thus the incidence and its precision can be found by converting the observed values to normal variate and calculating T_{2}. An example is given below where a comparison of the four methods based on propertion, Poisson, Binomial and $N B$ variate has been made.

An Example

A random sample of thirty primary units was drawn from a plot to estimate the borer incidence. The records of the infested and total number of stalks have been presented in Table IV.

The incidence values as calculated for proportion and converted on the assumption of Poisson, Binomial and $N B$ variate have alsc been shown in Table IV. The values of k_{1} and k_{2} required in the conversion of $N B$ variate were obtained from the sample. The means and the standard error and the coefficient of variation for each series show that the variation is highest among the incidence values based un proportion followed by transformed Binomial, Poisson and NB variate values. The relative efficiencies as compared to proportion are $15 \cdot 66 \%, 16 \cdot 99 \%$ and 25.48% for the Binomial, the Poisson and the $\dot{N} B$ variate respectively.

This is as was expected. In the hierarchy of discrete distributions, this is the order for increasing variance in relation to the mean. When p is small and as $n \rightarrow \infty, n p \rightarrow m$ Binomial becomes Poisson, while $N B$ becomes Poisson as $k \rightarrow \infty$. There are biological processes
where $N B$ fits in well and it is left as a problem to the Sugarcane Entomologists to find if the spread of infestation might conform to any one of them bridging the gap between the mathematics and the natural phenomenon.

Table IV

A random sample of thirty primary units and the different transformed variates to estimate the incidence

Serial No.	Infested stalks	Total stalks	Incidence Values based on . . .			
			Proportion	Binomial variate	Poisson variate	Negative Binomial variate
1	3	11	-2727	31.50	. 5122	1.278
2	2	11	-1818	$25 \cdot 50$	-4264	1-153
3	1	21	-0476	12.66	-2182	$0 \cdot 863$
4	0	13	-0000	$00 \cdot 00$	-0000	-000
5	1	7	-1429	$22 \cdot 22$	-3780	1.018
6	1	16	-0625	14.54	- 2500	-896
7	1	7	-1429	22-22	- 3780	1.013
8	2	11	-1818	$25 \cdot 25$	-4264	1-153
9	2	19	-1053	$18 \cdot 21$	-3245	1.067
10	2	5	-4000	$39 \cdot 23$	-6225	1-304
11	6	13	-4615	$42 \cdot 82$	-6798	1-461
12	3	13	- 2308	$28 \cdot 73$	-480 1	1.247
13	6	20	-3000	$33 \cdot 21$	-5477	1-376
14	6	14	-4286	$40 \cdot 92$	-6547	$1 \cdot 446$
15^{-}	3	10	-3000	$33 \cdot 21$	-5477	1-296
16	4	12	-3333	$35 \cdot 24$	-5773	2.355
17	2	15	-1333	21.99	-3651	1-103
18	8	21	-3810	38-12	. 6173	1.451
19	11	17	-6471	$53 \cdot 55$	-8044	1-589
20	4	16	- 2500	$30 \cdot 00$	- 5000	1-297
21	5	10	-5000	$45 \cdot 00$	-7071	$1 \cdot 460$
22	1	8	-1250	$20 \cdot 70$	-3536	$0 \cdot 99$?
23	2	22	-0909	17.56	-3015	1.046
24	3	23	-1304	21.47	-3611	1.153
25	4	19	- 2105	$27 \cdot 35$	-4588	1.267
26	5	10	- 5000	$45 \cdot 00$. 7071	$1 \cdot 460$
27	9	20	- 4.500	$42 \cdot 13$	-6708	1.495
28	3	15	- 2000	$26 \cdot 56$	-4583	1.222
29	2	20	-1000	$18 \cdot 44$	-3162	1.060
30	5	12	-4167	40.22	-6455	1.425
Mean	.	.	- 2576	29.113	-4763	1-193
S.D.	\because	.	-1625	11.73	-1768	- 2966
c.v.	.	-•	-6308	-4209	.3712	- 2476

Summary

To estimate the borer incidence in sugarcane, the stalks and the ; clumps do not form manageable primary units, and also any length or area units cannot be framed each of which may contain equal: number of stalks. Separate distributions of the infested and the total stalks in the primary units were, therefore, investigated.

It was found that the distributions of the infested and total stalks had variances much higher than the mean and did not belong to Normal, Binomial or Poisson distribution. The distributions for both were similar and conformed to the Negative Binomial distribution.

Since the incidence is the ratio of two random variables, an examination in the validity of assuming these values or belonging to Normal, Poisson and Binomial distribution was made. A consistent statistic for estimating this ratio based on $\sinh ^{-1}$ transformation valid for samples from the Negative Binomial distribution is suggested and its efficiency compared with the rest.

The comparative efficiencies of this statistic in relation to the other three based on proportion, Binomial and Poisson distributions were found and the relative efficiency of the suggested statistic was found to be the highest.

Acknowledgement

I am thankful to late Sri. B. D. Gupta, formerly Entomologist, Indian Institute of Sugarcane Research, Lucknow, for suggesting the problem and providing the necessary data. Thanks are also due to Sri. R. R. Panje, Director, Indian Institute of Sugarcane Research, Lucknow, for the helpful criticism and to Dr. A. R. Roy, Professor of Statistics, Lucknow University, for guidance in the preparation of the paper.

References

1. Anscombe, F. J. .. Biometrika, 37, Sampling theory of the Negative Binomial and Logarthmic series distributions, 1950, 337.
2. Beall, G. .. Statistics and Mathematics in Biology, Iowa State College Press, Ames, Iowa, 1954, 297.
3. Deming, W. E. .. Some Theory of Sampling, John Wiley and Sons. Inc., 1950, 502.

148 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS
4. Khanina, K. L. and Bandyopadhyay
5. Rao, C. R:
6. Rojas, B.

Srivastava, J. N. .. Annual Report, Indian Institute of Sugarcane Research, Lucknow, 1957, 56-57, 72.

